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Introduction

� The main idea behind Capability index is to compare what the process
is doing with the specification interval   

� Capability Indices are becoming today a very valuable decision tool:
– Internally for Process engineer

• for qualification and improvement of
– Tool
– Process
– Technology
– Close loop control (R²R)

– Externally for Customers
• for Quality garantee of their products

� The importance of Capability Indices performance has increased during
the 20 last years to reach the quality target equivalent to zero ppm
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Capability Indices History

� Statistical Process Control (SPC) is born in 1920st by Walter A. 
Shewhart

� Capability indices (Cp) were introduced by Juran in 1974  
� Ford Motor Company was the first to use aggressively these

indices since the early 1980s
� Microelectronics industry has started the use of these index in 

production in 1986 

Today, calculation of Process capabity indices for Key
parameters  has become a standard in our industry with

a very aggressive objective  (>1.67)
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Why do we have to improve
Cpk estimation ?

Parametric Test

Cpk estimation error using 
Normal Law (%)
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� Normal law Cpk estimation 
error is not acceptable for 
72% of parameters 

� Normal law Cpk estimation 
error is not acceptable for 
68% of parameters 

Process

Cpk estimation error using 
Normal Law (%)

72%

28%
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Cpk values associated to fallout

0.0018 ppm0.0009 ppm2

0.334 ppm0.167 ppm1.67

96 ppm48 ppm1.3

2700 ppm1350 ppm1

133614 ppm66807 ppm0.5

453255 ppm226628 ppm0.25

Two-sided spec. One-sided spec.Cpk
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Capability Index for the normal 
distribution (1/2)

� Definition of Distribution Spread :

– spread within which almost all of values within a distribution will fall 
– Originally described (normal law) as within plus or minus three 

standard deviation (± 3σ) or six standard deviation (6σ)

� Capability  Index can be defined as the ratio: 

Spread Process
 Interval ionSpecificat
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For Normal distribution
� 0.135% of data lies below µ - 3σ
� 50% of data lies below µ
� 99.865 % of data lies  below µ + 3σ

-5 -3 -1 1 3 5
µ - 3σ µ µ + 3σ

Capability Index for the normal 
distribution (2/2)
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For Normal distribution 
� µ - 3σ= X 0.00135 

� µ= X 0.50

� µ + 3σ= X 0.99865
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X 0.00135

µ - 3σ

X 0.50

µ

X 0.99865

µ + 3σ

General Approach for Normal 
Distribution
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For Non-Normal distribution 
� 0.135% of data lies below X 0.00135 

� 50% of data lies below X 0.50

� 99.865 % of data lies  below X 0.99865

General Approach for Non-normal 
Distribution  
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LSLUSLCp −

−=
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0.00135 0.00135

99.73 % of data are between
X 0.00135 and X 0.99865 
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Quantile Estimation Methods

� Among all existing methods to estimate the three quantiles, the 
Johnson and Pearson systems of distribution are the best for 
classical approaches.

� The Johnson system has been choosen in Crolles in 2001 for its 
ability to fit distribution with a wide variety of shapes.

� But the remaining difficulties of these methods are:
– Impossibility to fit some distributions
– Don’t provide a perfect estimation for some type of distribution as 

multi-modal distributions 
– Don’t provide confidence interval
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A new Approach using Neural 
Network for Distribution Fit

� Neural Networks are nonlinear functions used for black-box
modelling. They have a high flexibility.

� We use them to describe the ordered statistics :
– One input xi, one output i / (N+1) in ]0..1[
– 2 or 3 hidden neurons, sometimes 4.
– Typical function (3 HN) with 10 coefficients :  
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Neural  Networks Approach for 
Distribution Fit

� Training of NN is done on the 
ordered statistics (red crosses) 
with a weighted least-square
nonlinear regression. It returns 
an estimate of the 
Cumulative Function (black line)

� Quantiles and Cpk are calculated 
from the Cumulative Function

� By design, NN easily provides the
first derivatives of the function. 
With one single input in the NN, 
this first derivative is an estimate of 
the Density Function (black line) 
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Examples based on 90nm 
technology

Process: example1

� Cpk-Gaussian = 2.19
� Cpk-NeuralNetwork = 1.30

� Overestimation
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Examples based on 90nm 
technology

PT : example2 

� Cpk-Gaussian        = 0.94
� Cpk-NeuralNetwork= 1.93

� Underestimation
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Examples based on 90nm 
technology

Process: example3

� Cpk-Gaussian        = 1.29
� Cpk-NeuralNetwork= 1.73

� Underestimation
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Examples based on 90nm 
technology

PT : example4 

� Cpk-Gaussian        = 0.61
� Cpk-NeuralNetwork= 1.18

� Underestimation
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Examples based on 90nm 
technology

PT : example5

� Cpk-Gaussian        = 0.42
� Cpk-NeuralNetwork= 1.26

� Underestimation
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Examples based on 90nm 
technology

Process: example6

� Cpk-Gaussian=1.17
� Cpk-NeuralNetwork=1.61

� Underestimation
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Examples based on 90nm 
technology

Process: example7

� Cpk-Gaussian        = 1.30
� Cpk-NeuralNetwork= 0.82

� Overestimation

Long tails are the enemy of 
the Gaussian normal 
Law !!
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Neural  Networks Approach for 
Distribution Fit

� Discrepancy between Neural network approach and 
Gaussian normal law approach is even better with small
set of points

� Estimation starts from 30 points.
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Conclusions

Neural Network approach permits to extend the limitation 
of classical approaches for Quantile estimation 

� Independant of shape
� Independant of number of raw data
� Calculation always possible
� Error estimation (on going)

Neural Network approach increases the accuracy
of CPK calculation for any distribution type. 
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Perspectives

� Industrialization of Neural network method for Cpks 
calculation and performance at Fab level,

� « Bootstrap technique » for robust estimation of small 
set of points,

� Calculation of Confidence Intervals on Quantile 
estimation.
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