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Abstract

In the last three decades, neural-networks have evolved from an academic topic to a common
scientific computing tool. CRAN currently hosts around 80 packages (May 2020) that
involve neural-network modeling; some offering more than one algorithm. However, to our
knowledge, there is no comprehensive study which tests the accuracy, the reliability, and
the ease-of-use of those NN packages.

In this paper, we test a large number of packages against a common set of datasets with
varying levels of complexity to benchmark and rank them with statistical metrics.

We restrict our evaluation to single hidden-layer perceptrons that perform regression.
We ignore packages for classification and other specialized purposes. This leaves us with
approximately 60 package:algorithm pairs to test. The criteria used in our benchmark
were: (i) accuracy, i.e. the ability to find the global minima on 13 datasets, measured by the
Root Mean Square Error (RMSE) in a fixed number of iterations; (ii) speed of the training
algorithm; (iii) availability of helpful utilities; (iv) quality of the documentation.

We have given a score for each evaluation criterion to compare all package:algorithm
pairs in a global table. Overall, 15 pairs are considered accurate and reliable and are
recommended for daily usage. Other packages are either less accurate, slow, difficult to use,
or have poor or zero documentation.

To carry out this work, we developed multiple scripts along with the NNbenchmark
package. We have open-sourced our code for reproducibility on a github repository https:
//github.com/pkR-pkR/NNbenchmarkTemplates as well as outputs per package at https:
//akshajverma.com/NNbenchmarkWeb/index.html.

Introduction

The R Project for Statistical Computing, as any open-source platform, relies on its contribu-
tors to keep it up to date. Neural Networks, inspired by the brain itself, are a class of models
in the growing field of machine learning for which R has a number of tools. Previously,
neural networks were often considered theoretically instead of pragmatically, partly because
the algorithms used were computationally expensive.

The term “neural-network” is colloquially used for different model structures and
applications. For regression and classification, the term multilayer perceptron is used
interchangeably. The term “Recurrent Neural Network” is mainly used in the context of
autoregressive time-series while the term “Convolutional Neural Networks” for dimension
reduction and pattern recognition (images/audio/text). Most of the above types of neural
networks can be found in R packages hosted on CRAN but without any study about the
accuracy or the speed of computation. This is an issue as many slow or poor algorithms are
available in the literature and hence poor packages are implemented on CRAN.

A neural network algorithm requires complicated calculations to improve the model
control parameters. As with other optimization problems, the gradient of the chosen cost
function indicates the model’s lack of suitability. Optimization methods improve the current
iterate by changing the parameters in the opposite of the gradient direction generally with
an adaptive step. Parameters for the model are generally obtained by using part of the
available data (a training set) and tested on the remaining data. Modern software allows
much of this work, including approximation of the gradient, to be carried out without a
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large effort by the user.

The training process can generally be made more efficient if we can also approximate
second derivatives of the cost function, allowing us to use its curvature via the Hessian
matrix. There are a large number of approaches, of which quasi-Newton algorithms are
perhaps the most common and useful. Within this group, methods based on the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm for updating the (inverse) Hessian approxi-
mation provide several well-known examples. In conducting this study, we hypothesize
that these second-order algorithms would perform better than the first-order methods for
datasets that fit in memory.

To test our hypothesis, we conduct a thorough examination of these training algorithms
in R. There are many packages, but there’s a dearth of information that would allow the users
to make an informed decision. Our work aims to provide a framework for benchmarking
neural-network packages. We focus our examination to neural networks of the perceptron
type which consist of one input layer, one normalized layer, one hidden layer with a non-
linear activation function which is usually the hyperbolic tangent tanh(), and one output
layer.

Specifically, we focus only on regression based algorithms. The criteria used in our
benchmark were: (i) accuracy, i.e. the ability to find the global minima on 13 datasets,
measured by the Root Mean Square Error (RMSE) in a fixed number of iterations; (ii)
speed of the training algorithm; (iii) availability of helpful utilities; (iv) quality of the
documentation.

Neural Networks: The Perceptron

In this section, we briefly describe the single hidden-layer perceptron. As the “layer” term
suggests - some terms come from graphs representations while others come from the
traditional literature on non-linear models.

Using the graph description, a single-hidden layer neural network is made up of 3 parts:
(i) layer of the input(s), (ii) hidden layer which consists of independent neurons, each of
them performing two operations: a linear combination of the inputs plus an offset followed
by a non-linear function, (iii) output layer which is a linear combination of the output of the
previous layer.

The non-linear function used in the hidden layer must have the following four properties:
continuous, differentiable, monotonic, and bounded. The logistic (invlogit), hyperbolic tan-
gent (tanh) and arctangent (atan) functions are the usual candidates. The above description
has a simple mathematical equivalence. Let us take two examples.

The model y = a1 + a2 × tanh(a3 + a4 × x) + a5 × tanh(a6 + a7 × x) + a8 × tanh(a9 +
a10 × x) describes a neural network (Fig. 1a) with one input, three hidden neurons, one
output model where x is the input, tanh() is the activation function, y is the output and
a1, . . . , a10 are the parameters.

The model y = a1 + a2 × atan(a3 + a4 × x1 + a5 × x2 + a6 × x3 + a7 × x4 + a8 × x5) +
a9 × atan(a10 + a11 × x1 + a12 × x2 + a13 × x3 + a14 × x4 + a15 × x5) + a16atan(a17 + a18 ×
x1 + a19× x2 + a20× x3 + a21× x4 + a22× x5) describes a neural network (Fig. 1b) with five
inputs, three hidden neurons, one output model where x is the input, atan() is the activation
function, y is the output and a1, . . . , a22 are the parameters.

While the final gradient should be small, we believe it is helpful to have relatively large
gradients at the first steps of the training algorithm, so the following is recommended: (i)
normalized inputs and outputs (Fig. 1c), (ii) odd functions like the hyperbolic tangent
function or the arctangent function, (iii) small random values to initialize the parameters.
A common example of this is to use values extracted from a centred Gaussian N (0, 0.1)
distribution.

These practices help us find good local-minima and possibly the global-minima.

The dataset used for the training is assumed to have the number of rows much larger
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(a) NN 1-3-1 (b) NN 5-3-1 (c) NN 5-5N-3-1N-1

Figure 1: Three neural networks

than the number of parameters. While “much larger” is subjective, values of 3 to 5 are
generally accepted (in experimental design, some iterative strategies start with a dataset
having a number of distinct experiments equal to 1.8 times the number of parameters and
then increase the number of experiments to fine tune the model).

It is rather clear from the mathematical formula above that neural networks of perceptron
type are non-linear models which require training algorithms that can handle (highly) non-
linear models for their parameter estimation. Indeed, the intrinsic and parametric curvatures
of such models are usually very high and with so many parameters, the Jacobian matrix
might exhibit some co-linearities between its columns and become nearly singular. As a
result, appropriate algorithms for such dataset::model pairs are rather limited and well-
known. They pertain to the class of second-order algorithms such as the BFGS algorithm
which is Quasi-Newton in how it updates the approximate inverse Hessian or the Levenberg-
Marquardt algorithm which stabilizes the Gauss-Newton search direction at every iteration.

Unfortunately, due to certain educative tools on the backpropagation and recent pop-
ularity of “deep neural networks” that manipulate ultra-large models (sometimes more
parameters than examples in the datasets), many papers emphasize the use of first-order
gradient algorithms.

Therefore, many R packages have implemented such algorithms. In the case of the
perceptron, we contend this is an oversight, and provide evidence to that effect in this paper.
We refer interested readers to (Tan and Lim, 2019) for a review of second-order algorithms
for neural networks.

Methodology

Convergence and termination

Most of the package:algorithm pairs try to minimize the Root Mean Squared Error (RMSE)
during the training step. Two exceptions are the brnn package which minimizes the RMSE
plus the sum of the parameters (hence the name Bayesian Regularized Neural Network),
and the qrnn package which performs quantile regression. For all packages, the datasets
were learnt as a whole and without any weighting scheme to favor a single part of a dataset.
We don’t use a validation/test set because the purpose of our study is to verify the ability to
reach good minima. This requirement is satisfied by using only a train set.

When training neural networks, we attempt to tune a set of hyperparameters so that the
root to minimize the RMSE. When our method for such adjustment can no longer reduce
the RMSE, we say that the given algorithm terminated. We consider the method to have
converged when termination is not due to some exceptional situation and the final RMSE
value is relatively small1. In practice, some algorithms require that we stop the optimization

1We do not choose the mean absolute error (MAE) for overall ranking nor for convergence testing as there is a
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process in exceptional situations (e.g., a divide by zero), or a pre-set limit on the number of
steps or a maximum elapsed time is reached.

Specifically, second-order algorithms are all set to a maximum of 200 iterations. On
the other hand, first-order algorithms were set to several values, depending on how well
and how fast they converged: maxit1storderA=1000 iterations, maxit1storderB=10000 it-
erations, and maxit1storderC=100000 iterations. The full list of the maximum iteration
number per package:algorithm is given in Table 4 in Appendix D. It can be seen that we
were unable to completely harmonize the hyperparameters as an appropriate learning rate
differed between packages, despite the algorithm being similarly named.

Performance

We measure performance primarily by relative computing time between methods on a
particular computing platform. We could count the precise number of iterations, function
evaluations or similar quantities that indicate the computing effort, but this would have
required a large effort in R coding in order to get values that are comparable between NN
packages. We note that differences in machine architecture and in the attached libraries
(e.g., BLAS choices for R) will modify our performance measure. We are putting our tools
on a Github repository so that further evaluation can be made by ourselves and others as
hardware and software evolves.

The majority of the resulting files in our repository were generated on a Windows system
build 10.0.18362.752. The machine specifications are - (i) i7-8750H CPU, (ii) Intel(R) UHD
Graphics 630, (iii) NVIDIA GeForce GTX 1060 chip, (iv) 16 GB of RAM.

Tests were also performed on other platforms and the computation times were found to
be reasonably similar.

Phase 1 - Preparation of benchmark datasets and selection of packages

Datasets

A non-iterative calculation such as Ordinary Least Squares cannot generally be used to
model all the datasets in our evaluation set. Varying levels of difficulty in modeling the
different data sets are intended to allow us to further classify different algorithms and the
packages that implement them. As we focus on regression analysis, we select only datasets
where the response variable is real-valued.

Sonja Surjanovic and Derek Bingham of Simon Fraser University created a useful website
from which three of the multivariate datasets were drawn. We note the link, name and
difficulty level of the three datasets:

• http://www.sfu.ca/~ssurjano/fried.html: mFriedman, Friedman’s dataset, published
in (Friedman, 1991) (average difficulty),

• http://www.sfu.ca/~ssurjano/detpep10curv.html: mDette, Dette’s dataset, published
in (Dette and Pepelyshev, 2010) (medium difficulty),

• http://www.sfu.ca/~ssurjano/ishigami.html: mIshigami, Ishigami’s dataset, pub-
lished in (Ishigami and Homma, 1990) (high difficulty).

The last multivariate dataset, mRef153, was used to teach neural networks at ESPCI (The
City of Paris Industrial Physics and Chemistry Higher Educational Institution, https://www.
neurones.espci.fr/) from 2003 to 2013 and is available in the proprietary software Neuro
One at http://www.inmodelia.com/software.html. This dataset presents some interesting
non-linear features.

lack of consensus in the literature, see e.g. (Willmott and Matsuura, 2005; Chai and Draxler, 2014).
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Table 1: Datasets’ summary

Dataset Row nb. Input nb. Neuron nb. Param. nb.

Multivariate
mDette 500 3 5 26
mFriedman 500 5 5 36
mIshigami 500 3 10 51
mRef153 153 5 3 22

Univariate
uDmod1 51 1 6 19
uDmod2 51 1 5 16
uDreyfus1 51 1 3 10
uDreyfus2 51 1 3 10
uGauss1 250 1 5 16
uGauss2 250 1 4 13
uGauss3 250 1 4 13
uNeuroOne 51 1 2 7

uDreyfus1 is a pure neural network which has no error. This can make it difficult
for algorithms that assume an error exists. uDreyfus2 is uDreyfus1 with errors. Both are
considered to be of low difficulty and used to teach neural networks at ESPCI from 1991
to 2013. uDmod1 and uDmod2 are univariate datasets with few observations but exhibit high
non-linear patterns and prove to be very challenging datasets. The parameters are highly
correlated and singular Jacobian matrices often appear.

Three of the univariate datasets were taken from the US National Institute for Standards
and Technology (NIST) website: https://www.itl.nist.gov/div898/strd/nls/nls_main.
shtml. Namely uGauss1, uGauss2 and uGauss3 published in (Rust, 1996a,b,c, resp.) created
by NIST to assess non-linear least squares regressions are of low, low and medium difficulty
respectively.

The last univariate dataset, uNeuroOne, was also used to teach the same course and is now
available in the proprietary software NeuroOne at http://www.inmodelia.com/software.
html. In Table 1, we list some information on each dataset used in the first round of our
analysis: the number of neurons and the induced parameter number are available in the last
two columns.

Finally, we consider a Simon Wood test dataset, named bWoodN1, used in (Wood, 2011) for
benchmarking generalized additive models. Precisely, we consider a generation of Gaussian
random variates Yi, i = 1, . . . , n with the mean µi defined as

µi = 1 + f0(xi,0) + f1(xi,1) + f2(xi,2) + f3(xi,3) + f4(xi,4) + f0(xi,5)

and standard deviation σ = 1/4 where f j are Simon Wood’s smooth functions defined in
Appendix B, xi,j are uniform variates and n = 20, 000. bWoodN1 will only be used in the
second round of our analysis when the TOP-5 packages will be further analyzed with 5
neurons resulting in 41 parameters.

To build the final result table, we selected all four multivariate datasets and 4 out of the
8 univariate datasets so that the overall score does not overly weight the univariate datasets.
Note that the 2020 GSoC results are available in Section 1 of the supplementary materials,
(Mahdi et al., 2020). Furthermore the 2019 GSoC code uses all 12 datasets. For convenience,
all datasets are made available in NNbenchmark, so that anyone can replicate our analysis.

Packages

Using RWsearch (Kiener, 2020), we sought to automate the process of searching for
neural network packages. All packages that have “neural network” as a keyword in the
package title or in the package description were included.

As of May 2020, around 80 packages fall into this category. Packages nlsr, minpack.lm,
caret were added because the former two are important implementations of second-order
algorithms while the latter is the first cited meta package in the CRAN task view for machine
learning, MachineLearning. It is also a dependency for some of the other packages tested.
Restricting to regression analysis left us with 49 package:algorithm pairs in 2019 and 60
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package:algorithm pairs in 2020.

Phase 2 - Review of packages and development of a benchmarking template

All packages were tested 3 times. Each assessment is described in detail below.

1. The decision to exclude or include

From documentation and example code, we learned that not all packages selected by
the automated search fit the scope of our research. Some have no function to generate
neural networks while others were not regression neural networks of the perceptron type or
were only intended for very specific purposes: for instance to predict the amyloidogenicity
propensity of polypeptide sequences. Depending on the package, this could be decided by
looking at the DESCRIPTION file or by trial and error.

2. Templates for testing accuracy and speed

While inspecting the packages, we slowly developed a template for benchmarking that
evolved over time. The final structure of this template (for each package) is as follows:

1. Set up the test environment - loading of packages, setting working directory and
options;

2. Summary of tested datasets;
3. Loop over datasets:

a. setting parameters for a specific dataset,
b. selecting benchmark options,
c. training a neural network with a tuned function for each package,
d. calculation of convergence metrics (RMSE, MAE, WAE)2,
e. plot each training over one initial graph, then plot the best result,
f. add results to the appropriate existing record (*.csv file) and
g. clear the environment for next loop.

4. Clearing up the environment for the next package. It is optional to print warnings.

To simplify this process, we developed tools in the NNbenchmark package, of which
the first version was created as part of GSoC’19. In GSoC’20, 3 functions encapsulating the
template were added that have been made generic with the extensive use of the do.call
function from the base package:

1. In trainPredict_1mth1data a neural network is trained on one dataset and then used
for predictions, with several utilities. Then the performance of the neural network is
exported, plotted and/or summarized.

2. trainPredict_1data serves as a wrapper function for trainPredict_1mth1data for
multiple methods.

3. trainPredict_1pkg serves as a wrapper function for trainPredict_1mth1data for
multiple datasets.

A function for the summary of accuracy and speed, NNsummary, was also added. The pack-
age repository is at https://github.com/pkR-pkR/NNbenchmark, with template repository at
https://github.com/pkR-pkR/NNbenchmarkTemplates, and outputs per package at https:
//akshajverma.com/NNbenchmarkWeb/index.html. An example of a call to trainPredict_1pkg
is given in Appendix C.

3. Ease of use scoring

We define ease-of-use measures to rate NN packages on their user-friendliness. Based
on our understanding of what a user may be required to know or do when using a neural
network package, we consider: (i) a measure for the availability of appropriate utility

2We measure the quality of our model by RMSE, but the mean absolute error (MAE) and the worst absolute
error (WAE) may help distinguish packages with close RMSE values. See Appendix A for definition of convergence
metrics.
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functions (ii) a measure for (non-trivial) examples (iii) a sufficient documentation (well-
written manual, vignette(s)) (iv) a measure to rate the clarity of the R call to fit a given neural
network.

Our ratings are as follows.

1. Utilities in R to deal with NN

a. a predict function exists = 1 star
b. scaling capabilities exist = 1 star

2. Sufficient and reliable documentation

a. the existence of useful and relevant example(s)/vignette(s)

• clear, with regression = 2 stars
• unclear, examples use iris or are for classification only = 1 star
• no examples = 0 stars

b. input/output is clearly documented, e.g., what values are expected and returned
by a function

• clear input and output = 2 stars
• only one is clear = 1 star
• both are not documented = 0 stars

3. User-friendly call to fit a NN

a. simple one-line call or a single function = 2 stars
b. multiple-lines call to a single function = 1 star
c. multiple-lines call to many functions = 0 stars

Hence, to inform users about the usability of packages, the documentation measure
ranges from 0 to 4 stars, while the utility and the R call range from 0 to 2 stars.

Phase 3 - Collection of and analysis of results

Results collection

Looping over the datasets using each package template, we collected results in the relevant
package directories that rests in the templates repository. A large number of runs were
carried out in order to obtain the best result for every package.

Analysis

To rank the speed and quality of convergence, we have devised the following method:

1. The results datasets are loaded into the R environment as one large list. The dataset
names, package:algorithm names and all 10 run numbers, durations, and RMSE are
extracted from that list.

2. For the duration score (DUR), the duration is averaged by dataset. 3 criteria for the
RMSE score by dataset are calculated:

a. The minimum value of RMSE for each package:algorithm as a measure of their
best performance;

b. The median value of RMSE for each package:algorithm as a measure of their
average performance, without the influence of outliers;

c. The spread of the RMSE values for each package which is measured by the
difference between the median and the minimum RMSE (subsequently referred
to as RMSE D51).

3. Then, the ranks are calculated for every dataset and the results are merged into one
wide dataframe.
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Figure 2: RMSE minimum value per package for mIshigami and uDreyfus1 datasets

a. The duration rank only depends on the duration;
b. For minimum RMSE values, ties are decided by duration mean, then the RMSE

median;
c. For median RMSE values, ties are decided by the RMSE minimum, then the

duration mean;
d. The RMSE D51 rank only depends on itself.

4. A global score for all datasets is found by a sum of the ranks (of duration, minimum
RMSE, median RMSE, RMSE D51) of each package:algorithm for each dataset.

5. The final table is the result of ranking by the global minimum RMSE scores for each
package:algorithm.

Results, discussion and recommendations

Table 2 gives the RMSE and time score per package and per algorithm. The full list of scores
is given in Table 4 in Appendix D. We divide our analysis in two groups: packages imple-
menting second-order algorithms and packages implementing first-order algorithms. Figure
2 shows the minimum RMSE value per package:algorithm for two particular datasets
mIshigami and uDreyfus1, whereas Figure 3 displays the average computation time. The
number on the x-level refers to the RMSE overall score of the package:algorithm given in
Table 2 (last column), e.g., 8 refers to validann:optim(CG) which is a very slow algorithm.

Both figures show that a good overall score does not necessarily imply a good perfor-
mance on the two datasets under consideration. Furthermore, there is a break between
the TOP-10 package:algorithm and others in terms of RMSE value. In Section 1.13 of the
supplementary materials, (Mahdi et al., 2020), the score probabilities per package:algorithm
also gives some insights how robust is the overall score.

Regarding computation time, we observe that some package:algorithm are very slow
and have poor RMSE, e.g. 41 corresponding to AMORE:BATCHgd. In the following, we first
present the results for second-order algorithms, then low-order algorithms. Finally, we list
the reasons for discarded packages.

Second-order algorithms

Of all approaches, the following second-order algorithms generally performed better in
terms of convergence despite being limited to 1/5th or fewer iterations than the first-order
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Table 2: Result from Tested Packages

Individual rating Global score

Package Util Doc Call Algorithm Time RMSE

nlsr * **** ** 41. NashLM 18 1

rminer ** *** ** 45. nnet_optim(BFGS) 12 2

nnet * *** ** 42. optim (BFGS) 3 3

* **** ** 56. optim(BFGS) 35 4
* **** ** 57. optim(CG) 60 8
* **** ** 58. optim(L-BFGS-B) 36 15
* **** ** 59. optim(Nelder-Mead) 55 45

validann

* **** ** 60. optim(SANN) 20 55

MachineShop * *** * 32. nnet_optim(BFGS) 6 5

traineR * ** ** 55. nnet_optim(BFGS) 4 6

radiant.model ** ** ** 44. nnet_optim(BFGS) 10 7

** *** ** 34. optimx(BFGS) 26 9
monmlp

** *** ** 35. optimx(Nelder-Mead) 32 47

** *** ** 12. optim(BFGS) 46 10
** *** ** 14. Rprop 56 51CaDENCE
** *** ** 13. pso_psoptim 54 54

h2o ** ** 24. first-order 51 11

EnsembleBase * * ** 23. nnet_optim(BFGS) 5 12

caret ** *** ** 15. avNNet_nnet_optim(BFGS) 17 13

brnn ** **** ** 11. Gauss-Newton 8 14

qrnn ** *** ** 43. nlm() 28 16

** *** ** 51. Rprop 24 17
** *** ** 52. SCG 30 18
** *** ** 53. Std_Backpropagation 22 27
** *** ** 47. BackpropChunk 26 29
** *** ** 48. BackpropMomentum 25 30
** *** ** 49. BackpropWeightDecay 29 31
** *** ** 46. BackpropBatch 43 49

RSNNS

** *** ** 50. Quickprop 45 57

* *** ** 8. trainwgrad_adam 50 18
* *** ** 9. trainwgrad_RMSprop 47 26automl
* *** ** 10. trainwpso 57 43

deepnet * *** ** 20. BP 23 18

* *** ** 38. rprop+ 19 21
* *** ** 37. rprop- 21 22
* *** ** 40. slr 31 31
* *** ** 39. sag 41 38

neuralnet

* *** ** 36. backprop 37 50

** * 28. adamax 48 23
** * 27. adam 42 34
** * 29. nadam 44 36
** * 26. adagrad 58 37
** * 25. adadelta 59 40
** * 31. sgd 48 44

keras

** * 30. rmsprop 37 52

* *** * 2. ADAPTgdwm 16 24
* *** * 1. ADAPTgd 9 35
* *** * 4. BATCHgdwm 40 39

AMORE

* *** * 3. BATCHgd 39 41

minpack.lm * *** ** 33. Levenberg-Marquardt 15 24

** *** * 6. rmsprop 14 28
** *** * 5. adam 13 33ANN2
** *** * 7. sgd 11 42

** *** ** 16. adam 32 46
** *** ** 19. rmsProp 34 53
** *** ** 18. momentum 53 56

deepdive

** *** ** 17. gradientDescent 52 58

snnR ** ** ** 54. SemiSmoothNewton 7 48

elmNNRcpp ** *** ** 21. ELM 1 59

ELMR ** *** ** 22. ELM 2 60

Note: Statistics over 10 runs.
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Figure 3: Average time value per package for mIshigami and uDreyfus1 datasets

algorithms.

We note that 11 out of 15 of these package:algorithms use optim from stats. 2 of them,
CaDENCE‘s BFGS (Cannon, 2017a) and validann’s BFGS and L-BFGS-B (Humphrey, 2017),
make the call directly. However, it is not clearly stated in CaDENCE’s documentation
that optim’s BFGS method has been chosen rather than one of the other four methods.
Furthermore, the mention of Nelder-Mead in the documentation suggests that optim’s
Nelder-Mead method is used. Speed and variation between results for CaDENCE are also
not as good as other packages that use optim. This could be because CaDENCE is intended
for probabilistic non-linear models with a full title of “Conditional Density Estimation
Network Construction and Evaluation”.

By contrast, validann is clearly a package that allows a user to use all optim’s algorithms.
validann:L-BFGS-B ranks mostly lower than validann:BFGS, despite the former method
being more sophisticated. We believe this is due to our efforts to harmonize parameters,
thereby under-utilizing the possibilities of the L-BFGS-B algorithm. Both CaDENCE and
validann’s BFGS are outperformed by nnet, especially in terms of speed.

nnet (Ripley, 2020) differs from the two packages above because it uses the C code for
BFGS (vmmin.c) from optim (converted earlier from Pascal) directly instead of calling optim
from R. This may be what allows it to be faster, but limits the optimization to the single
method. nnet is only beaten by the Extreme Learning Machine (ELM) algorithms in terms of
speed. However, there is a larger variation between results (see the RMSE D51 in Appendix
D) in comparison to validann:BFGS. We believe the different default starting values are the
cause of this. For instance, nnet uses a range of initial random weights of 0.7 while validann
uses a value of 0.5. In spite of these results, the real reason most authors or users are likely
to choose nnet is because it is included in the distributed base R and is even mentioned as
the very first package in CRAN’s task view for machine learning (MachineLearning).

Our analysis found that 6 out of 11 packages tested that use optim do so through nnet.
Moreover, approximately 8 packages for neural networks, though not tested, use nnet.

The total number of nnet dependencies found through a search through the offline
database of CRAN with RWsearch is 136 packages, although some might be using nnet for
the multinomial log-linear models, not neural networks.

The packages that use nnet for neural networks are often meta packages with a host of
other machine learning algorithms. caret (Kuhn, 2020), also mentioned in the task-view,
boasts 238 methods with 13 different neural network packages, under a deceivingly simple
name of “Classification and Regression Training”. It has many pre-processing utilities
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available, as well as other tools.

EnsembleBase (Mahani and Sharabiani, 2016) may be useful for those who wish to
make model ensembles and test a grid of parameters, although the documentation is rather
confusing. MachineShop (Smith, 2020) has 51 algorithms, with some additional information
about the response variable types in the second vignette, functions for preprocessing and
tuning, performance assessment, and presentation of results. radiant.model (Nijs, 2020) has
an unalterable maxit of 10000 in the original package. We changed this to harmonize the
maxit parameter. rminer (Cortez, 2020) is the only package dependent on nnet that ranks
above nnet at number 2 for minimum RMSE, and even number 1 in some runs. It also ranks
number 1 on the other accuracy measures (median RMSE, minimum MAE, minimum WAE)
and is only behind deepdive and minpack.lm in terms of results that are consistent and do
not vary (RMSE D51).

The difference is probably from the change of maximum allowable weights in rminer
to 10000 from 1000 in nnet, which is also probably the reason its fits are slower. traineR
(Rodriguez R., 2019) claims to unify the different methods of creating models between
several learning algorithms.

It is worth noting is that nnet and validann do not have external normalization, which is
especially recommended for validann. However, some of the packages dependent on nnet
do have this capability and it is included in the scoring for ease of use. With NNbenchmark,
this is done through setting scale = TRUE in the function prepare.ZZ. Note that use of
scaling may complicate the application of constraints, so not be worth the effort for some
users. Nevertheless, users might want scaling, or at least to have a clear explanation of the
method chosen to center the variables. Scaling of both function and parameters is one of
the features that optimx (Nash and Varadhan, 2020) incorporates, as some optimization
algorithms can work significantly better on scaled problems (Nash, 2014).

Of all the packages, only monmlp (Cannon, 2017b) calls optimx. Since the calls are for
BFGS and Nelder-Mead, they could do better to call optim directly, though the door is open
to other optimization methods in optimx. However, the author, Alex J. Cannon who is also
the author of CaDENCE, has created a package meant to fill a certain niche, namely for
multi-layer perceptrons with optional partial monotonicity constraints. GAM-style effect
plots are also an interesting feature. Another package by Cannon is qrnn (Cannon, 2019)
which uses yet another algorithm: nlm, a “Newton-type” algorithm, from stats. Although
it’s performance is at the bottom of second-order algorithms, sometimes even being beaten
by first-order algorithms, this could also be because of the intended use of the package
compared to the tests here. qrnn is designed for quantile regression neural networks, with
several options. Cannon has included automatic scaling for all 3 of his packages, as is clearly
documented.

stats also includes nls, for non-linear least squares, which defaults to an implementation
of the second-order algorithm referred to as Gauss-Newton. However, in its documentation,
nls warns against “zero-residual” or even small residual problems. (Nash, 2014, Section
6.4.1) This was one of the motivations for nslr (Nash and Murdoch, 2019). nlsr uses a variant
(Nash, 1977) of the Levenberg-Marquardt algorithm versus the plain Gauss-Newton of nls,
and modifies the relative offset convergence criterion to avoid a zero divide when residuals
are small.

minpack.lm (Elzhov et al., 2016) offers another Marquardt approach. Where nlsr is
entirely in R, and also allows for symbolic or automatic derivatives (which are not relevant
to the present study), minpack.lm uses compiled Fortran and C code for some important
computations. Its structure is also better adapted to use features already available in nls
that may be important for some uses.

Despite the 2 packages ultimately performing well on all runs (capable of being in the
top 3 for RMSE and not slow), there are some reasons why users might hesitate to choose
them.

First, both require the full formula of the neural network including variables and param-
eters. Secondly, they require good starting values to achieve the best convergence. Notice
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that in Table 2, minpack.lm does not have a high rank. This is because we removed the
random Gaussian start values we had originally used; which means that the default start
values of minpack.lm were not appropriate for our datasets. We suspect nlsr’s performance
on convergence would have similarly dropped if it was possible to use nlsr with no user-set
starting values and the author’s chosen default values were inadequate. nls deals with this
by suggesting a companion function in stats, selfStart. Finally, both packages were able
to find better minima when the dataset was scaled. With no starting values and no scaling,
minpack.lm:nlsLM fails on uNeuroOne but performance is better on Friedman & Ishigami
datasets. On the other hand, with no start values and no scaling, it fails on everything but
mFriedman, mIshigami, uDmod2, and the Dreyfus datasets. Similarly, there is also a notable
drop in performance for nlsr without scaling on the Gauss datasets and mRef153. To con-
clude, both packages provide algorithms that are capable of doing well on our datasets, but
may not be suitable for less experienced users. The vignettes for nlsr and earlier book (Nash,
2014) may be useful.

brnn (Rodriguez and Gianola, 2020) is an implementation of the Gauss-Newton algo-
rithm in R that does not rely on nls or nlm from stats. Although it is well-documented and
has good speed, brnn’s implementation of the Gauss-Newton algorithm still ranks below
some of the previously mentioned BFGS and Levenberg-Marquardt tools in terms of its
global minimum RMSE. We found 2 reasons that we believe to be the cause of this. First, its
model uses one parameter fewer than the other algorithms. Only datasets uDreyfus1 and
uDreyfus2 which are purely 3 hidden neurons ignore the first term. Second, brnn does not
minimize the sum of squares of the errors but the sum of squares of the errors plus a penalty
on the parameters. In certain circumstances – especially with an almost singular Jacobian
matrix as with mDette, mIshigami, mRef153, uGauss3, and uNeuroOne – this will avoid issues
with highly correlated parameters.

The only second-order algorithm which we are unable to recommended from the results
of our research is snnR (Wang et al., 2017). It ranked among the 10 worst algorithms for
minimum RMSE out of all 60 algorithms, but this package, focusing on Sparse Neural
Networks for Genomic Selection in Animal Breeding, might prove useful in that perspective.

Lower-order algorithms

Packages with first-order algorithms can be broadly categorized into 2 types: (a) those that
allow for one hidden layer (b) those that allow for more than one hidden layer.

A. One hidden layer

The first category is comprised of either packages that also include second-order algo-
rithms previously discussed or packages that use the Extreme Learning Machine algorithm.
Only 2 packages include both second-order algorithms and a lower-order algorithm, that is,
monmlp and validann. monmlp has one algorithm besides BFGS, that is, optimx’s Nelder-
Mead. validann provides the same algorithm but from optim. validann’s implementation
is slower, as before, but ranks slightly better for minimum RMSE. Both implementations of
Nelder-Mead do not rank well in minimum RMSE, around 40 out of 60, with similar ranks
for the other criteria. We would also caution users to avoid the other methods in validann
from optim. From Table 2 it may appear that validann’s implementation of the Conjugate
Gradient (CG) algorithm finds reasonable minima and thus is a good option. It consistently
ranked in the top 15 with minimum RMSE. However, it is the slowest algorithm of all 60
algorithms tested. Note, this includes algorithms from packages that call external libraries
outside R in Python or Java and packages that use as much as 100,000 iterations.

On the other hand, validann’s SANN algorithm is relatively worse than other packages
as it ranks at number 55 for minimum RMSE although it is in the top one third for speed
(rank 20).

Packages that implement the ELMR algorithm are similar to SANN from validann in
the sense that they are faster but do not converge as well as other package’s algorithms. The
2 packages that do so, elmNNRcpp (Mouselimis and Gosso, 2020) and ELMR (Petrozziello,
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2015) are, respectively, number 1 and number 2 in the ranks for time but 59 and 60 (bottom
2) for minimum RMSE. ELMR converges slightly worse on all datasets than elmNNRcpp
but has noticeably worse performance on the Gauss datasets, especially uGauss1. Even
increasing the number of neurons did not lead to better convergence for those particular
datasets.

B. More than one hidden layer

Following the trend of “deep learning”, the last 9 packages provide the option for more
than one layer with a first-order learning algorithm. Our results show that they are often
either/both slower or worse at converging than the second-order algorithms with the
same number of neurons or layers than their counterparts. We recommend choosing better
algorithms over more layers for datasets similar to the ones we used.

Choosing more layers often comes at the expense of speed. An example of this is the
implementation of the first-order algorithm in h2o (LeDell et al., 2020). With the same
numbers of neurons it already is quite slow - coming in at 51 out of the 60 algorithms.

With a default hidden layer size of 2, each with 200 neurons, it takes around 10 minutes
on mFriedman with a minimum RMSE of 0.0022. On the other hand, nnet can find a minima
of the error function with a minimum RMSE of 0.0088 in less than a second with fewer
neurons and only one layer. Thus, despite having a ranking of 11 in minimum RMSE in the
final run, beating some of the second-order algorithms, users of h2o should be wary of the
trade off between performance and speed. Moreover, users might hesitate as it is not actually
clear what algorithm is used. The large number of options to choose from seem capable of
changing the basic algorithm itself into what is considered a different algorithm by other
packages (example: “adaptive_rate: Specify whether to enable the adaptive learning rate
(ADADELTA). This option is enabled by default.” in link, set to false in latest run). Some
users also might not want to setup Java, which is needed, although it is not as painful to
setup as some external libraries.

By far, the hardest package to set up which called external libraries was tensorflow
(Allaire and Tang, 2020) and its derivatives. In the summer of 2019, it took quite some time
to figure out how things worked. Then the latest TensorFlow 2.2.0 became available and
we hoped to be able to use the Eager Execution provided to avoid the R Session crashing
in the summer of 2020. Unfortunately, this led to different problems with the translation
between R and Python so we could not use the 2019 code. tfestimators (Allaire et al., 2018)
also had similar issues and is even less supported. kerasR (Arnold, 2017), which provides
a consistent interface to Keras, a Python API which provides an easier use interface to
TensorFlow, had the same issue. In the end, we tested the algorithms in keras (Allaire and
Chollet, 2020) with the hope that it would be able to represent the performance of the other
packages.

keras has the second-most number of algorithms, a total of 7, with most of them being
“adaptive” algorithms. The highest ranking algorithm for minimum RMSE is adamax at 23
and the highest ranking algorithm for speed was rmsprop at 37 (quite slow). However, these
results were achieved with a reasonable GPU so users might want to decide on whether to
use keras based on their own hardware specifications. Other algorithms did not perform
well in terms of minimum RMSE and the spread of RMSE represented by RMSE D51. As
keras also has many options available, including a convolutional layer for CNNs, more
experienced users may prefer it. On the other hand, just deciding the learning rate (the
default was not appropriate for our datasets) can be a challenge.

The default learning rates in RSNNS (Bergmeir, 2019) were more appropriate to use
directly. RSNNS is an example of a package that directly wraps around an external library,
the Stuttgart Neural Network Simulator (SNNS), to provide an easy-to-use interface. This
library is rather large with many implementations of neural networks. It contains the biggest
number of algorithms tested at a total of 8. Algorithms Rprop and SCG, the best for minimum
RMSE, rank at 16 and 17 respectively which is pretty good for a first-order algorithm. Speed
for Rprop is better but SCG’s results vary less.

Other packages
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AMORE (Limas et al., 2020): Unfortunately, the focus of the paper behind this package,
its unique point, is not explained or documented well enough.

An addition of some examples using the TAO option as the error criterion would be
helpful for using the TAO-robust learning algorithm, since this type of error measure
is most useful for data with outliers. The function for creating a dot file to use with
http://www.graphviz.org is also interesting. ADAPT algorithms appear to perform better
than the BATCH algorithms with the parameters used in this research.

ANN2 (Lammers, 2020): This package’s implementation of adam or rmsprop consistently
ranked in the top half for minimum RMSE which is not bad for a first-order algorithm. It is
not as accurate as second-order algorithms but all its algorithms are quite fast. C++ code
was used to enhance the speed. Functions for autoencoding are included with anomaly
detection in mind.

automl (Boulangé, 2020): It would be easier to use the algorithms in this package if they
did not rely on the beta parameters and instead had an argument of their own. However, it
is nice that there are notes on what parameters have a higher tuning priority. The package
is rather slow (highest ranking algorithm for speed is RMSprop at 47) with good enough
convergence (highest ranking is adam at 18).

deepdive (Balakrishnan, 2020): All algorithms are very good in terms of little variance
between results (see its RMSE D51 score). However, the results on convergence by minimum
RMSE score are not as good with the worst being gradientDescent which ranks 3rd from
the bottom. There are few exported functions. The novelty of this package is apparently in
the deeptree and deepforest functions it provides.

deepnet (Rong, 2014): This is one of the better performing implementations of the first-
order algorithms back-propagation, ranking at 18 for minimum RMSE. It’s also relatively
fast, ranking at 23 for speed.

neuralnet (Fritsch et al., 2019): Considering that this is the only package that uses 100000
iterations as its maxit parameter (excluding BNN which is not included in the official ranks),
it can be considered as not recommended. Nonetheless, the default algorithm, rprop+
and the similar rprop-, managed to rank 20 and 21 respectively, out of 60 algorithms for
minimum RMSE. These two also do not do badly in terms of speed. Following, in order,
are slr, sag, and traditional backprop as the worst at rank 48 out of 60 for minimum RMSE.
Notes on documentation show that is rather difficult to configure this package, and it should
probably not be a dependency for other packages that wish to be more certain of the results.
For simple datasets, it is less of an issue.

Untested packages

A certain number of packages have been discarded from this study for at least one of the
following reasons:

1. For regression but unsuitable for the scope of our research, coded RE in Table 5.
2. For time series, coded TS in Table 5.
3. For classification, coded CL in Table 5.
4. For specific application purpose, coded AP in Table 5.
5. For tools to complement NN’s by other packages, coded UT in Table 5.
6. Not actually neural networks and other reasons, coded XX in Table 5.

The full list of untested packages is given in Table 5 in Appendix D.

Further analysis of TOP-5 packages

We perform a second round of analysis with a larger dataset and a focus on the TOP-5
packages given in Table 2. That is, we consider packages nlsr, rminer, nnet, validann with
algorithm BFGS and MachineShop. We fit the NN packages on Simon Wood’s Gaussian
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Table 3: Performance on bWoodN1 dataset

Package Algorithm RMSE min RMSE median RMSE D51 MAE median WAE median Time median

MachineShop 32. nnet_optim 3.547 4.756 1.2100 3.901 16.02 3.40
nlsr 41. NashLM 3.548 4.706 1.1570 3.801 16.56 76.73
nnet 42. optim 3.550 4.706 1.1560 3.801 16.57 3.38
rminer 45. nnet_optim 3.366 3.688 0.3218 2.956 15.43 11.07
validann 56. optim 3.360 4.497 1.1370 3.711 15.89 140.80

Note: statistics taken over 20 runs; time in seconds.

dataset, see bWoodN1 in dataset description, which contains 20,000 rows with 6 inputs valued
in [0,1] for a (single) numeric output. Due to the non-linear functions considered, see
Appendix B, the link between the output and each explanatory variable is highly non-linear
which greatly affects the fitting time. Table 3 gives the metric performance over 20 runs of
these TOP-5 five packages on bWoodN1.

We observe that the minimum RMSE (over 20 runs) is very similar for all packages, yet
rminer and validann are a little ahead of the others. The metrics median RMSE and RMSE
D51 reveal how consistent rminer’s results are in comparison to other packages. This is
further proved by the other metric norms: WAE and MAE. However, regarding computation
time rminer is the 3rd slowest with nlsr being the 2nd slowest and validann being the
slowest of all. The best two in terms of speed in this class are nnet and MachineShop.
Nevertheless, these TOP-5 packages performs significantly better than other packages, see
Section 2.1 of the supplementary materials, (Mahdi et al., 2020).

Figures in Section 2.2 of the supplementary materials, (Mahdi et al., 2020), provides some
insights where a package performs reasonably well with respect to one explanatory variable
and where the fit misses the correct behavior of an explanatory variable.

Conclusion and perspective

This paper focuses on benchmarking neural network packages available on CRAN to
recommend or advise against some packages. Based on RWsearch’s outputs in 2019-2020,
we selected 26 appropriate packages to analyze in-depth and discarded the other 63 packages.
Using NNbenchmark, we ranked 60 package:algorithm pairs and are happy to note that
most of them converge well enough within a reasonable time. Packages reviewed appear to
offer essentially the same methods, and second-order algorithms perform generally better
than first-order algorithms.

nnet, the most recommended package of our study, ranked third in terms of minimum
RMSE, and is probably the most efficient package. nnet is notably used by many other
packages, such as MachineShop and rminer respectively ranked fifth and second. Machi-
neShop and rminer are also very good challengers in our benchmark, in particular when
considering a larger dataset. Other packages in the TOP-5, nlsr (the best in terms of RMSE
minimum) and validann are efficient packages but a little bit slower in our analysis.

However, we are disappointed that many of the packages we reviewed had poor docu-
mentation, notably EnsembleBase and keras. We often found it difficult to discover what
default starting values were used for model parameters and/or to understand how to
change the hyper-parameters.

As the field of neural networks continues to grow, there will always be more algorithms
to validate. For current algorithms in R, our research should be extended to encompass
more types of neural networks and their data formats (classifier neural networks, recurrent
neural networks, and so on). Different rating schemes and different parameters for package
functions can also be tried out.

Our work is available online through https://akshajverma.com/NNbenchmarkWeb/ and
is entirely reproducible thanks to NNbenchmark. We hope users and package maintainers
find our work useful and will provide any necessary feedback.
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Appendix

Appendix A

Consider a set of observations yi and its corresponding predictions ŷi for i = 1, . . . , n. The
three metrics used were:

MAE =
1
n

n

∑
i=1
|yi − ŷi|, RMSE =

1
n

√
n

∑
i=1

(yi − ŷi)2, WAE =
1
n

max
i=1,...,n

|yi − ŷi|.

These values represent the absolute, the squared and the maximum norm of residual vectors.

Appendix B

We define five smooth functions for Simon Wood’s test dataset

f0 = 5 sin(2πx), f1 = exp(3x)− 7,

f2 = 0.5× x11(10(1− x))6 − 10(10x)3(1− x)10, f3 = 15 exp(−5|x− 1/2|)− 6,

f4 = 2− 1(x<=1/3)(6x)3 − 1(x>=2/3)(6− 6x)3 − 1(2/3>x>1/3)(8 + 2 sin(9(x− 1/3)π)).
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Figure 4: Example of nnet on uDmod1

Appendix C

An example of our template for the package nnet:

library(NNbenchmark)
nrep <- 3
odir <- tempdir()

library(nnet)
nnet.method <- "BFGS"
hyperParams.nnet <- function(...) {

return (list(iter=200, trace=FALSE))
}
NNtrain.nnet <- function(x, y, dataxy, formula, neur, method, hyperParams, ...) {

hyper_params <- do.call(hyperParams, list(...))

NNreg <- nnet::nnet(x, y, size = neur, linout = TRUE,
maxit = hyper_params$iter, trace=hyper_params$trace)

return(NNreg)
}
NNpredict.nnet <- function(object, x, ...) { predict(object, newdata=x) }
NNclose.nnet <- function() { if("package:nnet" %in% search())

detach("package:nnet", unload=TRUE) }
nnet.prepareZZ <- list(xdmv = "d", ydmv = "v", zdm = "d", scale = TRUE)

res <- trainPredict_1pkg(5, pkgname = "nnet", pkgfun = "nnet", nnet.method,
prepareZZ.arg = nnet.prepareZZ, nrep = nrep, doplot = TRUE,
csvfile = FALSE, rdafile = FALSE, odir = odir, echo = FALSE)

Appendix D

Table 5: Review of Discarded Packages

Package Category Reason to Discard (File(s) and/or function(s))

appnn AP Provide a feed forward neural network to predict the amyloidogenicity propensity of
polypeptide sequences (DESCRIPTION file)

autoencoder AP Provide a sparse autoencoder, an unsupervised algorithm that learns useful features from
the data its given (::autoencode)
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Table 5: Review of Discarded Packages (continued)

Package Category Reason to Discard (File(s) and/or function(s))

BNN RE* Use a feed forward neural network to perform regression. It is unclear whether it fits the
form of perceptron in the scope. It states that it is intended for variable selection, although
how exactly the package would be used to do so is missing. Also the source code is written
in C that users of R might not understand. Performance is slow : need 100.000 iterations.
(::BNNsel-examples & abstract of paper)

Buddle CL Did not include regression in 2019. Unfortunately, the version we tested in 2020 could not
be used properly for regression either. See the examples (::TrainBuddle)

cld2 XX Provide bindings to Google’s C++ library CLD2, which detects languages using a Naïve
Bayesian classifier. CLD3, which does use neural networks, is mentioned in the description
(DESCRIPTION file & link to github)

cld3 AP Bindings to Google’s C++ library CLD3, which detects languages using a neural network
with an experimental algorithm (DESCRIPTION file)

condmixt AP Use neural networks to predict parameters of mixture models (DESCRIPTION file)
DamiaNN RE Was designed specificly for training datasets from Numerai, <https://numer.ai/>. We were

unable to adapt it to our datasets even after exporting functions from the interactive
interface (DESCRIPTION file, help pages)

deep CL Seem to implement a perceptron to classify data (implicitly known from choice of iris as
example and in source code)

deepNN RE Another implementation of deep learning. Its input format of lists of vectors is not standard
require users to understand how to use lapply or other functions to convert the format of
their data. Univariate datasets can’t be used with the functions and we could not manage to
adapt it to 2020 code (::train).

DNMF XX Help extract features that enforce spatial locality with separability between classes in a
discriminant manner (DESCRIPTION file)

evclass CL Provide an evidential neural network that outputs Dempster-Shafer mass functions
(DESCRIPTION file)

gamlss.add UT Allow users to use nnet with a variety of Generalized Additive Models for Location Scale
and Shape (::nn). It is not particularly appropriate for all our datasets.

gcForest XX Based on an article with "Towards an Alternative to Deep Neural Networks" in its title
(DESCRIPTION file)

GMDH TS Provide GMDH type neural network algorithms for short term forecasting on a univariate
time series (DESCRIPTION file)

GMDH2 CL Provide GMDH type neural network algorithms for performing binary classification
(DESCRIPTION file)

GMDHreg RE* Regression using GMDH algorithms. We only managed to tested the COMBI algorithm (the
most basic and first in the vignette) on the multivariate datasets. It is strangely slow on the
"easy" datasets, mFriedman and mRef153. The convergence is relatively not good
considering the ammount of layers (Title in DESCRIPTION file)

gnn AP Out of scope: Generative moment matching networks (GMMNs) are introduced for
generating quasi-random samples from multivariate models (article abstract)

grnn RE Provide an implementation of Specht’s General Regression Neural Network in 1991
(DESCRIPTION file). We could not manage to make the functions work on the multivariate
datasets. ::guess, the function for predicting, only allows for 1 data at a time. Performance of
General Regression Neural Networks can be seen from package yager instead.

hybridEnsemble RE Hybrid ensemble of eight different sub-ensembles (DESCRIPTION file)

image.libfacedetection AP Face detection with CNNs (DESCRIPTION file)
isingLenzMC AP Out of scope: This package provides utilities to simulate one dimensional Ising Model with

Metropolis and Glauber Monte Carlo (DESCRIPTION file)
kerasR RE See section on keras
leabRa RE Provide the local error driven and associative biologically realistic algorithm (Leabra) from

O’Reilly 1996. It combines supervised and unsupervised learning, so out of scope
(DESCRIPTION file).

learNN CL Implement some basic neural networks from \url{http://qua.st/} (DESCRIPTION file).
Examples seem to focus on binary classification (::learn_gd, ::learn_bp).

LilRhino AP Provide binary neural networks meant for reducing data (DESCRIPTION file), a random
forest style collection of neural networks for classification (::Random_Brains), and code for
even more purposes. Documentation is satisfyingly clear for a package for applications: a 3
layer network with an adam optimizer, with an explanation of its activation functions
(::Binary_Network)

neural CL An implementation of "a simple MLP neural network that is suitable for classification tasks"
(::mlptrain)

NeuralNetTools UT Out of scope: Functions are available for plotting, quantifying variable importance,
conducting a sensitivity analysis, and obtaining a simple list of model weights
(DESCRIPTION file and Help Pages titles)

NeuralSens UT A greater focus on sensitivity, with additional functions (DESCRIPTION file)
NlinTS TS A non-linear version of a causality test with feed forward neural networks and a Vector

Auto-Regressive Neural Network (VARNN) for non-linear time series analysis models
(DESCRIPTION file)
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Table 5: Review of Discarded Packages (continued)

Package Category Reason to Discard (File(s) and/or function(s))

nnetpredint UT Out of scope: Computing prediction intervals of neural network models at certain
confidence level (DESCRIPTION file)

nnfor TS Automatic to fully manual time series modelling with neural networks (DESCRIPTION file)
nnlib2Rcpp CL Provide a collection of neural networks, but examples seem to indicate classification and

testing our code with the functions provided led to error. Using the RcppClass might be
confusing for less experienced R users (::NN-class)

nntrf AP Provide useful pre-processing for Machine Learning tasks through data transformation in a
non-linear, supervised way with a perceptron (DESCRIPTION file)

onnx UT Aims to provide an open source format for neural networks, with definitions of an
extensible computation graph model, built-in operators, and standard data types
(DESCRIPTION file)

OptimClassifier UT Search for the best amount of neurons for binary classifcation neural networks, among other
types of binary classifiers (based on how Optim.NN works & DESCRIPTION file)

OSTSC UT A tool to solve imbalanced data for univariate time series classification with oversampling
using integrated ESPO and ADASYN methods (DESCRIPTION file) thus improving the
performance of RNN classifiers (vignette)

passt AP This package provides implementation of the Probability Associator Time (PASS-T) model,
a memory model based on a simple competitive artificial neural network which imitates
human judgment of frequency and duration (DESCRIPTION file)

pnn CL This package provides implementation of the Specht algorithm, 1990, for classification with
four functions: learn, smooth, perf, and guess (DESCRIPTION file)

polyreg XX Polyregression as alternative to NN (DESCRIPTION file)

predictoR RE A shiny interface for supervised learning with very minimal documentation. Users may be
additionally confused when opening the application only to find that it’s default language is
Espanol, although this can be changed in the Idioma section. (DESCRIPTION file &
::init_predictor)

ProcData AP Provide tools for exploratory process data analysis via functions: reading, process
manipulation, action sequence generators, feature extraction and prediction (link +
DESCRIPTION file)

quarrint AP Out of scope: provide two indexes for interaction prediction between groundwater and
quarry extension, one of which is an artificial neural network ; specified classifier for quarry
data (help page - quarrint-package and DESCRIPTION file)

rasclass CL Provide neural networks as one of the five supervised classification algorithms for raster
images with a design meant to facilitate land-cover analysis (DESCRIPTION file)

rcane RE Provide parameter estimation for linear regression, which was not appropriate for the
relationships in our data. (DESCRIPTION file)

regressoR RE A manual rich version of predictoR
rnn AP Implementations of the vanilla Recurrent Neural Network, Long Short-Term Memory

(LSTM), and Gated Recurrent Unit (GRU) in native R (DESCRIPTION file)
RTextTools AP Out of scope: A machine learning package for automatic text classification (DESCRIPTION

file)
ruta AP unsupervised neural networks (DESCRIPTION file)
simpleNeural CL Neural networks for multi-class or binary classification (DESCRIPTION file)

softmaxreg CL Out of scope: Implementation of ’softmax’ regression and classification models with
multiple layer neural network (DESCRIPTION file)

Sojourn.Data AP Stores some neural networks used for Sojourn Accelerometer methods (DESCRIPTION file)
spnn CL Out of scope : Scale invariant version of the original PNN with the added functionality of

allowing for smoothing along multiple dimensions while accounting for covariances within
the data set (DESCRIPTION file)

studyStrap AP Implements multi-study learning algorithms such as merging, the study-specific ensemble
the study strap, the covariate-matched study strap, covariate-profile similarity weighting,
and stacking weights with single-study learners from caret (DESCRIPTION file)

TeachNet CL Provide neural networks with up to 2 hidden layers, 2 different error functions, and a
weight decay for 2 class classification : it is slow. (DESCRIPTION file & ::TeachNet)

tensorflow RE See section on keras
tfestimators RE See section on keras
trackdem AP An artificial neural network can be trained for filtering false positives present in video

materials or image sequences (DESCRIPTION file)
TrafficBDE RE* Use caret for a grid of parameters for 3 layers combined with neuralnet. Is very slow. Out of

scope to test one layer perceptrons. We recommend the author to use other packages and
lessen the number of layers. Datasets in Traffic Status Prediction and Urban Places are
similar in nature to ours (TrainCR.R, DESCRIPTION file)

tsfgrnn TS Out of scope: A general regression neural network (GRNN) is a variant of a Radial Basis
Function Network. Allow you to forecast time series using an autoregressive GRNN model
(DESCRIPTION file)
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Table 5: Review of Discarded Packages (continued)

Package Category Reason to Discard (File(s) and/or function(s))

yager RE* This package provides a neural network that behaves differently from a perceptron. Results
indicate that predictions are quite close to the real values, however this comes at the cost of
a large number of weights. With less weights or insufficient training data, the performance
isn’t as great. (::grnn.fit)

yap CL Yet another PNN, with a N-level response, where N > 2 (DESCRIPTION file)
zFactor AP Computational algorithms to solve equations and find the ’compressibility’ factor ‘z‘ of

hydrocarbon gases (DESCRIPTION file)

Note: AP=Application, CL=Classification, RE=Regression, RE*=?, TS=Time serie, UT=Utility, XX=Other.
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Table 4: All convergence scores per package:algorithm sorted by minimum RMSE

Input parameter RMSE Score Other score

Package Algorithm Input format Maxit Learn. rate median D51 MAE WAE

nlsr 41. NashLM full fmla & data 200 - 3 16 3 6

rminer 45. nnet_optim(BFGS) fmla & data 200 - 1 6 1 1

nnet 42. optim (BFGS) x & y 200 - 2 17 2 3

56. optim(BFGS) x & y 200 - 4 10 4 5
57. optim(CG) x & y 1000 - 6 10 5 4
58. optim(L-BFGS-B) x & y 200 - 13 30 14 13
59. optim(Nelder-Mead) x & y 10000 - 44 45 46 42

validann

60. optim(SANN) x & y 1000 - 53 51 56 55

MachineShop 32. nnet_optim(BFGS) fmla & data 200 - 9 22 9 7

traineR 55. nnet_optim(BFGS) fmla & data 200 - 5 15 6 2

radiant.model 44. nnet_optim(BFGS) "y" & data 200 - 8 32 12 10

34. optimx(BFGS) x & y 200 - 10 18 9 11
monmlp

35. optimx(Nelder-Mead) x & y 10000 - 47 45 44 47

12. optim(BFGS) x & y 200 - 28 48 21 40
14. Rprop x & y 1000 0.01 54 60 52 58CaDENCE
13. pso_psoptim x & y 1000 - 56 56 54 56

h2o 24. first-order "y" & data 10000 0.01 7 7 8 8

EnsembleBase 23. nnet_optim(BFGS) x & y 200 - 15 34 15 15

caret 15. avNNet_nnet_optim(BFGS) x & y 200 - 10 21 11 9

brnn 11. Gauss-Newton x & y 200 - 12 9 13 12

qrnn 43. nlm() x & y 200 - 14 25 7 36

51. Rprop x & y 1000 - 23 52 25 28
52. SCG x & y 1000 - 17 26 18 19
53. Std_Backpropagation x & y 1000 0.1 32 31 31 36
47. BackpropChunk x & y 1000 - 34 41 32 34
48. BackpropMomentum x & y 1000 - 35 39 35 30
49. BackpropWeightDecay x & y 1000 - 30 43 33 31
46. BackpropBatch x & y 10000 0.1 48 27 50 48

RSNNS

50. Quickprop x & y 10000 - 58 36 58 57

8. trainwgrad_adam x & y 1000 0.01 20 35 16 20
9. trainwgrad_RMSprop x & y 1000 0.01 31 50 29 39automl
10. trainwpso x & y 1000 - 41 49 41 38

deepnet 20. BP x & y 1000 0.8 18 38 24 17

38. rprop+ fmla & data 100000 - 23 40 23 24
37. rprop- fmla & data 100000 - 21 42 21 18
40. slr fmla & data 100000 - 39 37 39 46
39. sag fmla & data 100000 - 49 59 47 52

neuralnet

36. backprop fmla & data 100000 0.001 51 10 49 45

28. adamax x & y 10000 0.1 18 20 20 16
27. adam x & y 10000 0.1 28 44 30 25
29. nadam x & y 10000 0.1 39 58 40 41
26. adagrad x & y 10000 0.1 43 53 42 35
25. adadelta x & y 10000 0.1 35 19 34 33
31. sgd x & y 10000 0.1 45 47 45 43

keras

30. rmsprop x & y 10000 0.1 55 57 55 54

2. ADAPTgdwm x & y 1000 0.01 22 29 16 26
1. ADAPTgd x & y 1000 0.01 25 8 26 21
4. BATCHgdwm x & y 10000 0.1 33 14 37 27

AMORE

3. BATCHgd x & y 10000 0.1 38 24 42 31

minpack.lm 33. Levenberg-Marquardt full fmla & data 200 - 16 5 19 14

6. rmsprop x & y 1000 0.01 25 33 27 23
5. adam x & y 1000 0.01 27 27 28 21ANN2
7. sgd x & y 1000 0.01 37 22 36 29

16. adam x & y 10000 0.4 42 1 38 44
19. rmsProp x & y 1000 0.8 46 4 48 50
18. momentum x & y 1000 0.8 52 3 53 51

deepdive

17. gradientDescent x & y 10000 0.8 57 2 57 53

snnR 54. SemiSmoothNewton x & y 200 - 49 13 50 48

elmNNRcpp 21. ELM x & y - - 59 55 59 59

ELMR 22. ELM fmla & data - - 60 53 60 60

Note: TOP5 are nlsr:NashLM, rminer:nnet_optim(BFGS), nnet:optim (BFGS), validann:optim(BFGS), MachineShop:nnet_optim(BFGS).
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